2019年基金从业备考正在紧张而忙碌的进行中,新东方职上网小编为大家整理了证券基金基础知识点,帮助大家夯实基础,轻松过关。
正态分布
正态分布是最重要的一类连续型随机变量分布,当一个随机变量的取值受到大量不同因素作用的共同影响,并且单个因素的影响都微不足道的时候,这个随机变量就服从或近似服从正态分布。
正态分布密度函数的显著特点是中间高两边低,由中间(X=μ)向两边递减,并且分布左右对称,是一条光滑的“钟形曲线”。
正态分布距离均值越近的地方数值越集中,而在离均值较远的地方数值则很稀疏;这意味着正态分布出现极端值的概率很低,而出现均值附近的数值的概率非常大。同时图像越“瘦”,正态分布集中在均值附近的程度也越大。
【考不过真退费】2019年基金从业资格考试辅导班热招>>
扫描或微信搜索“职上金融人”,将第一时间获取2019年基金从业考试时间、报名时间等最新消息。
随机变量的相关性——相关系数
相关系数是从资产回报相关性的角度分析两种不同证券表现的联动性。我们通常用ρij表示证券i和证券j的收益回报率之间的相关系数。相关系数的绝对值大小体现两个证券收益率之间相关性的强弱。如果a与b证券之间的相关系数绝对值|ρab|比a与c证券之间的相关系数绝对值|ρac|大,则说明前者之间的相关性比后者之间的相关性强。
相关系数ρij总处于+1和-1之间,亦即|ρij|≤1。若Pji=1,则表示ri和rj完全正相关;相反,若ρij=-1,则表示ri和rj完全负相关。如果两个变量间完全独立,无任何关系,即零相关,则它们之间的相关系数ρij=0。
通常情况下两个证券收益率完全相关和零相关的情形都不会出现,其相关系数往往是区间(-1,1)中的某个值,即0<|ρij|<1,这时我们称这两者不完全相关。
当0<ρij<1时,ri与rj正相关,其中一个数值的增加(降低)往往意味着另一个数值的增加(降低);
而当-1<ρij<0时,ri与rj负相关,其中一个数值的增加(降低)往往意味着另一个数值的降低(增加)。
2022年中级经济师3天特训营免费领!!
课程套餐 | 课程内容 | 价格 | 白条免息分期 | 购买 |
---|---|---|---|---|
2021基金从业考试-签约旗舰托管班 | 录播+直播+考前预测卷+模考卷+讲义+协议不过退费 | ¥3980 | 首付398元 | 视听+购买 |
2021基金从业考试-签约旗舰直达班 | 录播+直播+考前预测卷+模考卷+讲义+重读 | ¥2980 | 首付298元 | 视听+购买 |
2021基金从业考试-进阶直达班 | 录播+直播+模考卷+讲义+重读不过退费 | ¥1980 | 首付198元 | 视听+购买 |